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If an SQL query is an aggregate over a join, some aggregation work may be pushed down on branches
of join, possibly reducing the execution cost. This relies on the property of the aggregate that it can be
split over union and product. For example, for count(*), we can push down counting on join branches,
following the formula 

But that formula is incorrect in set theory... A note on duplicates. In this article we deal with sets of tuples,
yet SQL tables allow duplicate rows. It's understood that to interpret a set as a table (base or derived), the
table must have key columns, or one can be introduced. In the previous formula, we interpret  and 
as base tables with keys, and the derived table  can be introduced with an extra key column
with value , therefore union  will not de-duplicate any rows.

In this article, we first discuss aggregate push-down with general types of aggregate, grouping, and
joining. We then apply the the general solution on SQL aggregate with group-by and inner equi-join,
producing multiple equivalent queries that can be evaluated by a cost-based optimizer.

aggregate and group-by

An aggregate  applied on a table , as , produces a table with a single tuple.

An aggregate  applied on a table  grouped by a a set of predicates  , as , produces a table
defined by

As noted before, there won't be de-depulicate by ; the derived table has the same cardinality of .

Multiple groupings is defined as
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aggregate push-down over union

Every aggregate  can be expressed as  where  can be pushed down over union as

This can always be done; in the worst case,  simply retains all the rows, and  restores them. Of
course, in practice we are only interested in such  that does proper aggregation of data, e.g. 
sum(T.x).

Since the result of any aggregate  can be computed from the result of an  with property (3), the rest of
the article only deals with such type of .

aggregate push-down over product

Every aggregate  over a product can be expressed as

Again, this is always possible; in the worst case,  and  can retain all the rows.

The nature of  is to map a tuple to another tuple. When  applies on a table with multiple rows, it's
applied on each row individually, i.e.

L-R-composed predicates

We say that a predicate  is L-R-composed, if  is composed by  and  such that

theta-join partitioned

Every "theta-join" can be partitioned as

where every predicate  is L-R-composed (6), i.e.

In the worst case, the set of  simply enumerates every row in .
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We want to partition (7) even further. Introduce an arbitrary set of predicates, , such that any row in 
satisifies one and only one predicate in , therefore

Same for the R-side. Then,

 is the same formular as the L-side, but with " " replaced by " "

aggregate over join with group-by

We now look at a query of the form

From (1) and (8),

We require that every predicate  in  is L-R-composed (6)

Then,

Apply (3), (4), and (5)
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query transformation

We now look at  of the form

where  is the set of . (While a  may appear multiple times in ,  is a proper set without
duplicates).  is similarly defined.

We will prove that , under some requirements.

From (1)

We require that  and  can be swapped, typically because  preserves columns used by 

From (R.1), (R.2), (7), and (2)

We require that, typically because ,  preserves the columns used by  and ,

Then,

Therefore, given (R.1), (R.2), (R.3), we have equivalency
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SQL aggregate, group-by, inner equi-join
We now apply the previous analysis to SQL query of the form

and find it equivalent to

with

,  are arbitrary column sets we can introduce.

Explanation: predicates ,  test that a row has specific values in .

unique columns

If it is know that  is a unique key of ,  always acts on a sigle row, therefore group-by
is unnecessary in L2; instead we can do

  is non-aggregate, 

This can always be done regardless of , because we can always choose  to contain the
(possibly fictitious) unique rowId column.

This can be done on the R-side too of course. But if we do it on both sides at the same time, no
aggregation is pushed down, the transformed query is close to, possibly identical to, the original form.

outer join

To handle left outer join, we may try adding rows of nulls on the R-side. However, this depends on
whether  is sensitive to null rows. For example, count(*) counts all the rows, so this strategy won't
work. But it may work for some type of aggregates. TBA.
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